DATA SHEET

T 8384-4 EN

Type 3730-4 Electropneumatic Positioner

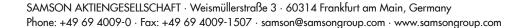
with PROFIBUS-PA communication · Series 3730

Anwendung

Positioners for attachment to pneumatic control valves

Valve travel from 3.6 to 300 mm \cdot Opening angle 24 to 100°

Smart, bus-powered field device complying with PROFIBUS-PA specifications based on IEC 61158-2 transmission technology


The microprocessor-controlled positioner compares the set point cyclically transmitted over the PROFIBUS-PA network to the travel or opening angle of the control valve and issues a corresponding output signal pressure.

The Type 3730-4 Positioner communicates using PROFI-BUS-PA specification according to IEC 61158 and IEC 61784 to exchange data with programmable logic controllers, automation systems and various engineering tools.

Special features

- PROFIBUS-PA Profile 3.01 certified positioner fulfilling all compulsory requirements of PROFIBUS-PA Profile 3.02
- Automatic ID adaptation according to PROFIBUS-PA Profile 3.02 to facilitate replacement of positioners with Profile 2.0 or 3.0 (e.g. Type 3785)
- Classified status alarms acc. to NAMUR Recommendation NE 107
- DTM file available to integrate the positioner into FDT/ DTM in compliance with specification 1.2
- Simple attachment to all common linear and rotary actuators
 - SAMSON direct attachment (Fig. 1)
 - NAMUR rib (Fig. 2)
 - Attachment to rod-type yokes acc. to IEC 60534-6-1
 - Attachment according to VDI/VDE 3847
 - Rotary actuator attachment according to VDI/ VDE 3845 (Fig. 3)
- Any desired mounting position of the positioner (but not suspended)
- Single-knob, menu-driven operation
- · Automatic start-up
- LCD easy to read in any mounted position due to selectable reading direction
- Integrated EXPERTplus diagnostics for control valves
 (► T 8389)
- Online changing of control parameters
- · Automatic zero monitoring
- Calibrated travel sensor without gears susceptible to wear

samsor

- Permanent storage of all parameters (protected against power failure)
- Negligible influence of temperature and supply air
- Adjustable output pressure limitation
- Activatable tight-closing function
- · Binary input for DC voltage signals

Additional options

Inductive limit contact with proximity switches

Integrated solenoid valve

Binary input for floating contact

External position sensor (Fig. 4)
 Stainless steel housing

Principle of operation

The positioner is mounted on pneumatic control valves and is used to assign the valve position (controlled variable x) to the control signal (set point w). The positioner compares the electric control signal of a control system to the travel or rotational angle of the control valve and issues a signal pressure (output variable y) for the pneumatic actuator.

The positioner mainly consists of an electric travel sensor system, an analog i/p module with a downstream air capacity booster and the electronics with the microcontroller.

When a set point deviation occurs, the actuator is either vented or filled with air. If necessary, the signal pressure change can be slowed down with a volume restriction that can be connected as necessary. Using the software, the signal pressure to the actuator can be limited to 1.4, 2.4 or 3.7 bar.

The fixed flow regulator ensures a constant air flow to the atmosphere, which is used to flush the inside of the positioner housing and to optimize the air capacity booster. The i/p module is supplied with a constant upstream pressure by the pressure regulator to compensate for any fluctuations in the

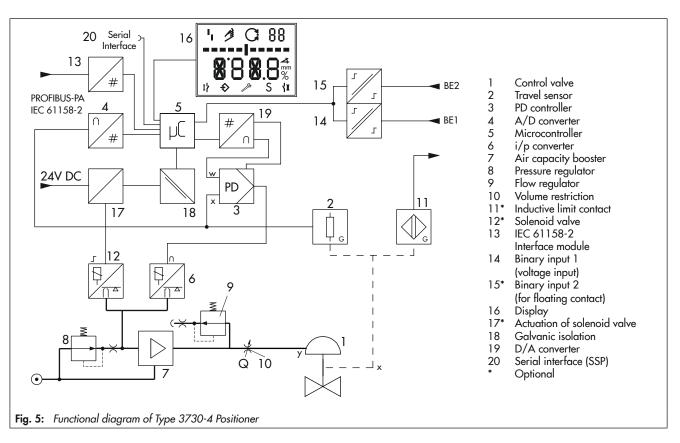
supply pressure.

The positioner communicates and is powered using IEC 61158-2 transmission technology conforming to PROFIBUS-PA specifications.

As a standard feature, the positioner comes with a binary input for DC voltage signals to signalize process information over the PROFIBUS-PA network.

Operation

A single rotary pushbutton facilitates operation. The parameters are selected by turning the rotary pushbutton, pushing it activates the required setting. In the menu, all parameters are listed in one level, meaning there is no need to search in submenus. All parameters can be checked and changed on site.


All values are displayed on the LCD. The reading direction of the LCD can be rotated by 180° .

The closing direction of the control valve is indicated to the positioner by setting the DIP switch "Air to open/Air to close". It assigns the CLOSED position of the control valve to the 0 % reading.

The INIT key activates initialization which is started according to the ready adjusted parameters. After initialization is completed, the positioner immediately starts closed-loop operation.

Configuration using TROVIS-VIEW

The SAMSON configuration software, TROVIS-VIEW, can be used to configure the positioner. For this purpose, the positioner is equipped with an additional digital interface to be connected to the RS-232 interface of a PC. TROVIS-VIEW adapts the positioner to any process requirements and allows the process to be checked while the process is running. The control valve is connected to the process over the PROFIBUS-PA network.

ent actuator rature Temperature Supply air of vibration systems set point d valve	Independent of supply air approx. < 110 I_n/h At $\Delta p = 6$ bar: 8.5 m_n^3/h · At $\Delta p = 1.4$ bar: 3.0	-protected versions. 1 61326-1 and NAMUR Recommendation NE 21 and range · Second M20x1.5 threaded connection m² wire cross-sections matic capability of the pilot valve for emergency ms is given. 1 61511 and the required hardware fault tolerance					
ent actuator rature Temperature Supply air of vibration	Independent of supply air approx. < $110 l_n/h$ At $\Delta p = 6$ bar: $8.5 m_n^3/h$ · At $\Delta p = 1.4$ bar: $3.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 l_n/h$ · At $\Delta p = 1.4$ bar: $4.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 l_n/h$ · At $\Delta p = 1.4$ bar: $4.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 l_n/h$ · At $\Delta p = 1.4$ bar: $4.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 l_n/h$ · At $\Delta p = 1.4$ bar: $4.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 l_n/h$ · At $\Delta p = 1.4$ bar: $4.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 l_n/h$ · At $\Delta p = 1.4$ bar: $4.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 l_n/h$ has: $1.0 l_n/h$ bar: $1.0 $	-protected versions. 1 61326-1 and NAMUR Recommendation NE 21 ang range · Second M20x1.5 threaded connection time wire cross-sections matic capability of the pilot valve for emergency					
rature Temperature Supply air	Independent of supply air approx. < $110 l_n/h$ At $\Delta p = 6 bar$: $8.5 m_n^3/h$ · At $\Delta p = 1.4 bar$: $3.0 cm^3/h$ · At $\Delta p = 1.4 bar$: $4.0 cm^3/h$ · At $\Delta $	$5 \text{ m}_n^3/\text{h}$ · $K_{Vmax(20 ^{\circ}\text{C})} = 0.15$ -protected versions. 1 61326-1 and NAMUR Recommendation NE 21 ang range · Second M20x1.5 threaded connection					
rature Temperature Supply air	Independent of supply air approx. < $110 l_n/h$ At $\Delta p = 6$ bar: $8.5 m_n^3/h$ · At $\Delta p = 1.4$ bar: 3.0 At $\Delta p = 6$ bar: $14.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: 4.0 -20 to +80 °C for all versions -45 to +80 °C with metal cable gland Observe the limits in the test certificate for explosion $\leq 0.15 \%/10 K$ None $\leq 0.25 \%$ up to 2 kHz and 4 g according to IEC 770 Complying with EN 61000-6-2, EN 61000-6-3, EN One M20 x 1.5 cable gland for 6 to 12 mm clamping	$5 \text{ m}_n^3/\text{h}$ · $K_{Vmax(20 ^\circ \text{C})} = 0.15$ -protected versions. 1 61326-1 and NAMUR Recommendation NE 21 ang range · Second M20x1.5 threaded connection					
rature Temperature Supply air	Independent of supply air approx. < $110 l_n/h$ At $\Delta p = 6$ bar: $8.5 m_n^3/h$ · At $\Delta p = 1.4$ bar: $3.0 l_n/h$ At $\Delta p = 6$ bar: $14.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 l_n/h$ -20 to +80 °C for all versions -45 to +80 °C with metal cable gland Observe the limits in the test certificate for explosion $\leq 0.15 l_n/h$ None $\leq 0.25 l_n/h$ up to $2 l_n/h$ and $4 l_n/h$ according to IEC 770 Complying with EN 61000-6-2, EN 61000-6-3, EN	$5 \text{ m}_n^3/\text{h}$ · $K_{Vmax(20 ^{\circ}\text{C})} = 0.15$ -protected versions.					
rature Temperature Supply air	Independent of supply air approx. < 110 I_n/h At $\Delta p = 6$ bar: $8.5 m_n^3/h$ · At $\Delta p = 1.4$ bar: $3.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 m_n^3/h$ · At $\Delta p = 1.4$ bar	$5 \text{ m}_n^3/\text{h}$ · $K_{Vmax(20 ^{\circ}\text{C})} = 0.15$ -protected versions.					
rature Temperature Supply air	Independent of supply air approx. < $110 l_n/h$ At $\Delta p = 6$ bar: $8.5 m_n^3/h$ · At $\Delta p = 1.4$ bar: 3.0 At $\Delta p = 6$ bar: $14.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: 4.0 -20 to +80 °C for all versions -45 to +80 °C with metal cable gland Observe the limits in the test certificate for explosion $\leq 0.15 \%/10 K$ None	$5 \text{ m}_n^3/\text{h}$ · $K_{Vmax(20 ^{\circ}\text{C})} = 0.15$ -protected versions.					
ent actuator rature	Independent of supply air approx. < $110 l_n/h$ At $\Delta p = 6$ bar: $8.5 m_n^3/h$ · At $\Delta p = 1.4$ bar: 3.0 At $\Delta p = 6$ bar: $14.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: 4.0 -20 to +80 °C for all versions -45 to +80 °C with metal cable gland Observe the limits in the test certificate for explosion $\leq 0.15 \%/10 K$	$5 \text{ m}_n^3/\text{h}$ \cdot $K_{Vmax(20 {}^{\circ}\text{C})} = 0.15$					
ent actuator rature	Independent of supply air approx. < 110 I_n/h At $\Delta p = 6$ bar: $8.5 m_n^3/h$ · At $\Delta p = 1.4$ bar: 3.0 At $\Delta p = 6$ bar: $14.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: 4.0 -20 to +80 °C for all versions -45 to +80 °C with metal cable gland Observe the limits in the test certificate for explosion	$5 \text{ m}_n^3/\text{h}$ \cdot $K_{Vmax(20 {}^{\circ}\text{C})} = 0.15$					
ent actuator	Independent of supply air approx. < 110 I_n/h At $\Delta p = 6$ bar: $8.5 m_n^3/h$ · At $\Delta p = 1.4$ bar: 3.0 At $\Delta p = 6$ bar: $14.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 m_n^3/h$ · At $\Delta p = 1.4$ bar: $4.0 m_n^3/h$	· · · · · · · · · · · · · · · · · · ·					
ator with air	Independent of supply air approx. < 110 I_n/h At $\Delta p = 6$ bar: 8.5 m_n^3/h At $\Delta p = 1.4$ bar: 3.0	· · · · · · · · · · · · · · · · · · ·					
	Independent of supply air approx. < 110 l _n /h						
	Reversible						
	≤0.1 %						
	≤0.3 %						
	Linear/equal percentage/reverse equal percentage · User-defined (over operating software and communication) · Butterfly valve linear/equal percentage · Rotary plug valve linear/equal percentage Segmented ball valve linear/equal percentage Deviation from characteristic ≤ 1 %						
	0 bar up to the capacity of the supply pressure						
	1.4 to 7 bar (20 to 105 psi) Air quality acc. to ISO 8573-1: 2001 Max. particle size and density: Class 4 · Oil content: Pressure dew point: at least 10 K below the lowest a						
of error	0 mA						
nt	15 mA						
	9 to 32 V DC · Powered over bus line The limits in the type examination certificate additionally apply for explosion-protected versions.						
	'	r					
	Certified DTM file acc. to FDT specification 1.2, suitable for integrating the positioner into frame applications that support the FDT/DTM concept. Other integrations, e.g. into SIMATIC PDM using EDD						
	Data transmission conforming to PROFIBUS-PA spec	ification acc. to IEC 61158 and IEC 61784					
	,	γ - ε εεμ.,					
	Fieldbus interface according to IEC 61158-2, bus-powered Field device according to FISCO (Fieldbus Intrinsically Safe Concept)						
Adjustable	Adjustable within the initialized travel/angle of rotation of the valve; travel can be restricted to 1/5 at						
	9	24 to 100° opening angle					
	_	3.6 to 300 mm 3.6 to 300 mm					
Adjustable	· ·	3.6 to 30 mm					
	cates addition Adjustable Adjustable	the maximum. Fieldbus interface according to IEC 61158-2, bus-partield device according to FISCO (Fieldbus Intrinsical) Data transmission conforming to PROFIBUS-PA specification 1.2, suital cations that support the FDT/DTM concept. Other in SAMSON SSP interface and serial interface adapted TROVIS-VIEW with database module 3730-4 9 to 32 V DC · Powered over bus line The limits in the type examination certificate addition at 1.5 mA of error 0 mA 1.4 to 7 bar (20 to 105 psi) Air quality acc. to ISO 8573-1: 2001 Max. particle size and density: Class 4 · Oil content Pressure dew point: at least 10 K below the lowest at 0 bar up to the capacity of the supply pressure Linear/equal percentage/reverse equal percentage munication) · Butterfly valve linear/equal percentage Deviation from characteristic ≤ 1 % ≤0.3 %					

Binary input 1								
Input	0 to 30 V DC with reverse polarity protection \cdot Static destruction limit 40 V/5.8 mA \cdot Current consumption 3.5 mA at 24 V \cdot Galvanic isolation							
Signal	Signal '1' at $U_e > 5 \text{ V} \cdot \text{Signal '0'}$ at $U_e < 3 \text{ V}$							
Materials								
Housing	Die-cast aluminum EN AC-AlSi12(Fe) (EN AC-44300) acc. to DIN EN 1706 · Chromated and powder paint coated · Special version: stainless steel 1.4408							
External parts	Stainless steel 1.4404/316L							
Cable gland	M20x1.5, black polyamide							
Weight	Approx. 1.0 kg							

Options for Type 3730-4							
Binary input 2 for floating contact							
Switching input	R < 100 Ω · Contact load 100 mA · Static destruction limit 20 V/5.8 mA · Galvanic isolation						
Solenoid valve · Approval acc. to IEC 61	508/SIL						
Input	24 V DC · Reverse polarity protection · Static destruction limit 40 V						
	Power consumption: $I = \frac{U - 5.7 \text{ V}}{3840 \Omega}$ (corresponding to 4.8 mA at 24 V/114 mW)						
Signal	Signal '0' no pick-up < 12 V · Signal '1' safe pick-up > 19 V (emergency venting at 0 V)						
Service life	> 5 x 10 ⁶ switching cycles						
Pepperl+Fuchs inductive limit contact	For connection to switching amplifier acc. to EN 60947-5-6						
SJ2-SN proximity switch	Measuring plate not detected: ≥3 mA · Measuring plate detected: ≤1 mA						
External position sensor							
Valve travel	Same as positioner						
Cable	10 m · Flexible and durable · With M12x1 connector · Flame-retardant acc. to VDE 0472 Resistant to oils, lubricants and coolants as well as other aggressive media						
Permissible ambient temperature	(emergency venting at 0 V) > 5 x 10 ⁶ switching cycles act For connection to switching amplifier acc. to EN 60947-5-6 Measuring plate not detected: ≥3 mA · Measuring plate detected: ≤1 mA Same as positioner 10 m · Flexible and durable · With M12x1 connector · Flame-retardant acc. to VDE 0472						
Immunity to vibration	Up to 10 g in the range of 10 Hz to 2 kHz						
Degree of protection	IP 67						

Table 2: Explosion protection certificates

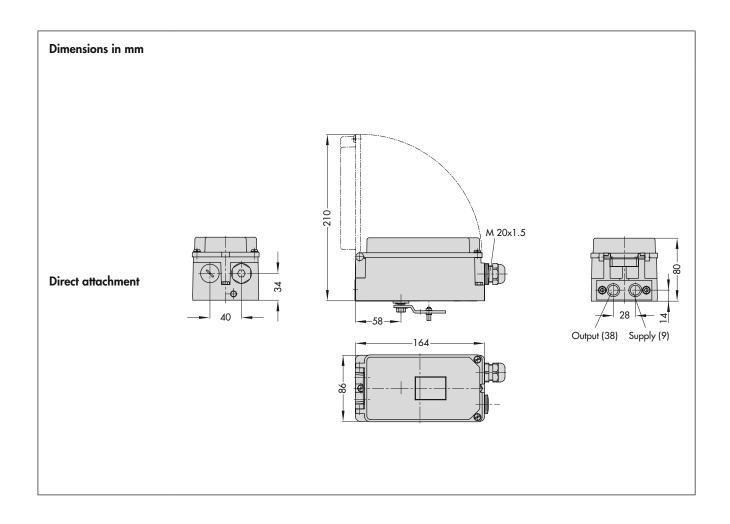
Туре	Certification		Type of protection/comments								
		Number	PTB 04 ATEX 2109	II 2G Ex ia IIC T6 Gb							
	(Ex) 1)	Date	11.05.2017	II 2D Ex ia III T80°C Db							
		Number	2020322307002425								
	CCC Ex	Date	18.09.2020	Ex ia IIC T4 ~ T6 Gb							
	GGC EX	Valid until	17.09.2025								
		Number	A P HQ MH 104 1444								
	CCoE	Date	21.04.2018	Ex ia IIC T6							
5		Valid until	20.04.2023								
,		Number	RU C-DE.HA65.B.00510/20								
	EAC Ex	Date	18.03.2020	1Ex ia IIC T6/T5/T4 Gb X Ex tb IIIC T80 °C Db X							
		Valid until	18.03.2025	EX ID IIIC 180 C DB X							
	IFCF	Number	IECEx PTB 06.0054	Ex ia IIC T6T4 Gb;							
	IECEx	Date	17.07.2017	Ex ia IIC T80°C Db							
		Number	ZETC/35/2021								
	TR CMU 1055	Date	26.07.2021	II 2G Ex ia IIC T6T4 Gb II 2D Ex ia IIIC T80 °C Db							
		Valid until	25.07.2024	III 2D EX Id IIIC 100 C DD							
73	CSA	Number Date	1 <i>675787</i> 24.05.201 <i>7</i>	Ex ia IIC T6, Class I, II, Div. 1, Groups A-G Ex nA II T6, Ex nL IIC T6; Class I, Div. 2, Groups A-D; Class II, Div. 1, Groups E-G Type 4 Enclosure							
3730	FM	Number Date	3023605 15.03.2006	Class I, Zone O AEx ia IIC; Class I, II, III, Div.1, Groups A–G; Class I, Div.2, Groups A–D; Class II, Div.2, Groups F, G							
	⟨Ex⟩ 1]	Number Date	PTB 04 ATEX 2109 11.05.2017	II 2D Ex tb IIIC T80°C Db							
7	IECEx	Number Date	IECEx PTB 06.0054 17.07.2017	Ex th IIIC T80°C Db							
	TR CMU 1055	Number	ZETC/35/2021								
		Date	26.07.2021	II 2D Ex tb IIIC T80 °C Db							
	TR CMO 1055	Valid until	25.07.2024	II 2D EX IS IIIC 100 C DS							
_	_	Number	PTB 05 ATEX 2010 X								
	(Ex) 2)	Date	22.06.2017	II 3G Ex nA IIC T6 Gc II 3D Ex tc IIIC T80°C Dc							
				ii ob Ekie iiie ioo e be							
	CCC Ex	Number	2020322307002425	Ex ic IIC T4 ~ T6 Gc							
		Date	18.09.2020	Ex nA IIC T4 ~ T6 Gc							
ά	P	Valid until	17.09.2025								
	IECEx	Number	IECEx PTB 06.0054	Ex nA IIC T6T4 Gc; Ex tc IIIC T80°C Dc							
		Date	17.07.2017	LA IC IIIC 100 C DC							
	TR CMU 1055	Number	ZETC/35/2021	II 3G Ex ic nA IIC T6 Gc							
		Date	26.07.2021	II 3D Ex to IIIC T80 °C Dc IP66							
		Valid until	25.07.2024								

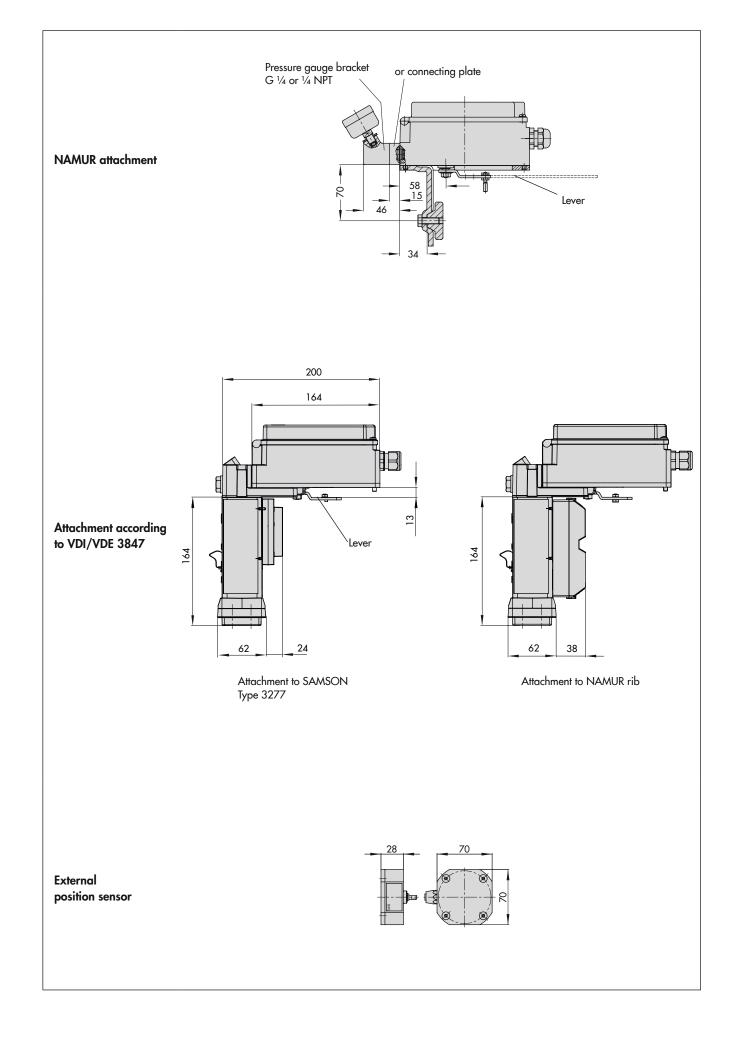
¹⁾ EC type examination certificate 2) Statement of conformity

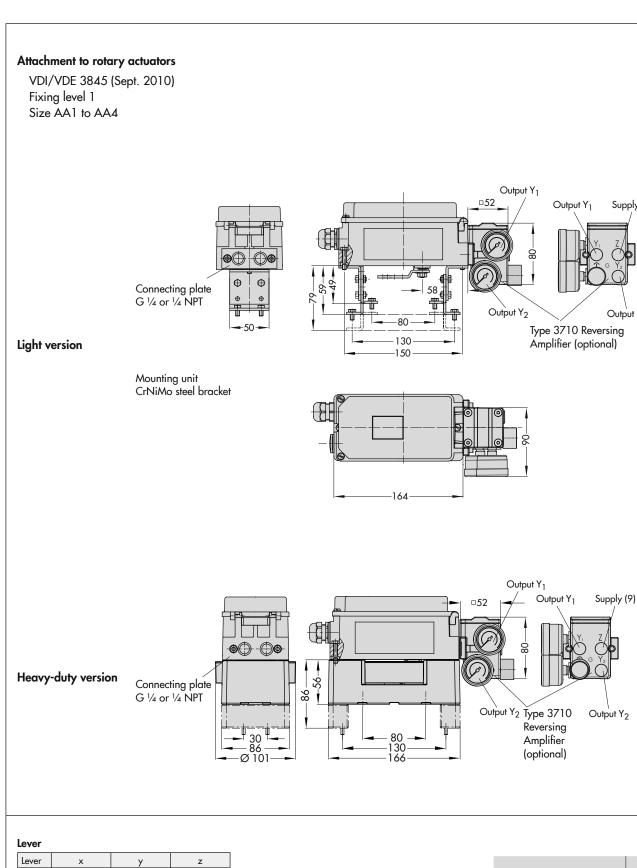
Electrical and bus connection

The Type 3730-4 Positioner with PROFIBUS-PA communication must be connected to bus segments complying with IEC 61158-2 requirements. A shielded two-wire line is used for both supply power and data communication.

Mounting the positioner

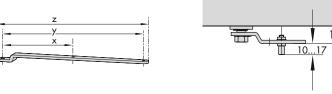

The Type 3730 Electropneumatic Positioner can be attached directly to the Type 3277 Actuator (175 to 750 cm²) over a connection block. In actuators with "actuator stem extends" fail-safe action, the signal pressure is routed over an internal hole in the actuator yoke to the actuator. In actuators with "actuator stem retracts" fail-safe action, the signal pressure is routed to the actuator over ready-made external piping.


Using the appropriate bracket, the positioner can also be attached according to IEC 60534-6-1 (NAMUR recommendation). The positioner can be mounted on either side of the control valve.


A pair of universal brackets is used for the attachment to Type 3278 Rotary Actuators or other rotary actuators according to VDI/VDE 3845. The rotary motion of the actuator is transferred to the positioner over a coupling wheel with travel indication.

A special version of the positioner allows it to be attached according to VDI/VDE 3847. This type of attachment allows the positioner to be replaced quickly while the process is running by blocking the air in the actuator. The positioner can be attached directly to the Type 3277 Actuator using an adapter bracket or adapter block. Alternatively, it can be attached to the NAMUR rib of a control valve using an additional NAMUR connection block.

A reversing amplifier is necessary for double-acting, springless actuators for the second opposing signal pressure.


17 mm S $25 \; \text{mm}$ 33 mm М 25 mm 50 mm 66 mm 70 mm 100 mm 116 mm

200 mm

216 mm

100 mm

XL

Supply (9)

Output Y₂

Ordering text

- Type 3730-4... Positioner
- Without pneumatic connecting rail (only when directly attached to Type 3277)
- With pneumatic connecting rail ISO 228/1-G ¼
- With pneumatic connecting rail ½-18 NPT
- Without/with pressure gauge up to max. 6 bar
- Attachment to Type 3277 Actuator (240 to 700 cm²)
 Attachment according to IEC 60534-6-1 (NAMUR)
- Valve travel: ... mm, if applicable, rod diameter: ... mm
- Attachment according to VDI/VDE 3847
- Valve travel: ... mm, if applicable, rod diameter: ... mm
- Attachment to Type 3278 Rotary Actuator (160/320 cm²), mounting unit with CrNiMo steel bracket or heavy-duty attachment
- Attachment to rotary actuators acc. to VDI/VDE 3845, mounting unit with CrNiMo steel bracket or heavy-duty attachment
- Pneumatic reversing amplifier for double-acting actuators with connection acc. to ISO 228/1-G ¼ or ¼-18 NPT
- Adapter M20x1.5 to ½ NPT
- Metal cable gland
- Special version: housing made of CrNiMo steel

Article code

	Type 3730-4 Positioner	х	х	х	0)	х	0	х	х	1	х	0	0	х	0	х	х
With LC	CD and autotune, PROFIBUS-PA																	
Explosio	on protection																	
Withou	t	0																
ATEX	II 2G Ex ia IIC T6 Gb; II 2D Ex ia III T80°C Db	1																
CSA	Ex ia IIC T6; Class I, II, Div.1, Groups A, B, C, D, E, F, G; Ex nA II T6; Ex nL IIC T6; Class I, Div.2, Groups A, B, C, D; Class II, Div.1, Groups E, F, G	3																
FM	Class I, Zone O AEx ia IIC; Class I, II, III, Div.1, Groups A, B, C, D, E, F, G; Class I, Div.2, Groups A, B, C, D; Class II, Div.2, Groups F, C	3																
ATEX	II 2D Ex tb IIIC T80°C Db	5																
ATEX	II 3G Ex nA IIC T6 Gc; II 3D Ex tc IIIC T80°C Dc	8																
Additio	nal equipment																	
Inductiv	e limit contact																	
Wit	hout		0															
1 x	SJ2-SN (NC contact)		1				0											
Solenoi	d valve																	
Wit	hout			0)													
Wit	h, 24 V DC			4														
Externa	position sensor																	
Without							0											
Wit	h		0	0)		1		0			0				\perp		
Binary i	input																	
Wit	hout								0									
Floo	ating contact	_	_				0		1			\perp			\perp	\perp		
Diagno	stics																	
EXPERT	plus		\perp							4					\perp	\perp		\perp
	g material																	
Aluminum (standard)												0						
Stainles		\perp					0					1				\perp		\perp
Special	application																	
Withou															0			
Version compatible with paint															1			
	port with thread 1/4-18 NPT		0	0)		0		0						2			
without	lditional vent hole and VDI/VDE 3847 adapter, travel pick-off parts														6			
With a	dditional vent hole	\perp													7	\perp		
Special																		
Withou																0	0	0
IECEx	Ex ia IIC T6T4 Gb; Ex ia IIC T80°C Db	1														0	1	2
IECEx	Ex th IIIC T80°C Db	5														0	3	4
IECEx	Ex nA IIC T6T4 Gc; Ex tc IIIC T80°C Dc	8														0	1	5
EAC	1Ex ia IIC T6/T5/T4 Gb X; Ex tb IIIC T80 °C Db X	1														0	1	4